ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

The absolute stereostructures of three rare D:B-friedobaccharane skeleton triterpenes from the leaves of *Salacia chinensis*

Yi Zhang, Seikou Nakamura, Tao Wang, Hisashi Matsuda, Masayuki Yoshikawa*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan

ARTICLE INFO

Article history: Received 21 March 2008 Received in revised form 12 May 2008 Accepted 12 May 2008 Available online 15 May 2008

Keywords: Salacia chinensis Hippocrateaceae D:B-friedobaccharane skeleton Triterpene

ABSTRACT

Three new rare D:B-friedobaccharane skeleton triterpenes named foliasalacins D_1 (1), D_2 (2), and D_3 (3) together with the 20 known ones (4–23) were isolated from the leaves of *Salacia chinensis* Linn., collected in Thailand. The absolute stereostructures of the D:B-friedobaccharane-type compounds (1–3) were characterized on the basis of chemical and physiochemical evidences.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the course of our characterization studies on bioactive constituents from *Salacia* species, $^{1-13}$ we have reported the isolation and absolute stereostructural elucidation of 13 megastigmane glycosides, 7 phenolic glycosides, and 8 triterpenes from the leaves of *Salacia chinensis* Linn. (Hippocrateaceae) together with the 20 known constituents. $^{14-17}$ As a continuing study on this herbal medicine, three new triterpenes possessing the rare D:B-friedobaccharane skeleton, named foliasalacins D_1 (1), D_2 (2), and D_3 (3) were isolated together with the 20 known ones (4–23). This paper deals with the absolute stereostructural elucidation of these three new constituents (1–3).

2. Results and discussion

The dried leaves of *S. chinensis* Linn. collected in Thailand were finely cut and extracted with methanol (MeOH) under reflux to provide a methanolic extract (13.0%). The MeOH extract was partitioned into an EtOAc– H_2O (1:1, v/v) mixture to furnish an EtOAc–soluble fraction (4.1%) and an aqueous phase. The aqueous phase was further extracted with n-BuOH to give an n-BuOH-soluble fraction (2.4%) and an H_2O -soluble fraction (6.6%). The EtOAc–soluble fraction was subjected to normal– and reversed-phase silica gel column chromatographies, and finally to HPLC to

give three new triterpenes, foliasalacins D_1 (1, 0.00042%), D_2 (2, 0.00025%), and D_3 (3, 0.00024%) (Chart 1), together with the 20 known ones, 3β -hydroxy-20-oxo-30-norlupane (4, 0.0028%), 18 29-norlupan-3,20-dione (5, 0.00004%), 19 lup-20(29)-en-3 β ,15 α -diol (6, 0.00053%), 20 betulin (7, 0.0013%), 21 lup-20(29)-en-3-on-28-ol (8, 0.00007%), 22 betulinic acid (9, 0.00087%), 21 lup-20(29)-en-3 β ,30-diol (10, 0.00028%), 23 30-hydroxy lup-20(29)-en-3-one (11, 0.014%), 21 3 β ,20-dihydroxylupane (12, 0.00009%), 24 friedelin (13, 0.042%), 21 4-epifriedelin (14, 0.0011%), 25 friedelan-3-one-29-ol (15, 0.00009%), 21 octandronol (16, 0.00009%), 26 12 β -hydroxy D:A-friedooleanan-3-one (17, 0.00004%), 26 oleanoic acid (18, 0.00033%), 21 erythrodiol (19, 0.00037%), 21 ursolic acid (20, 0.00034%), 27 uvaol (21, 0.00037%), 21 19a(H)-taraxastane-3 β ,20 α -diol (22, 0.00007%), and isoursenol (23, 0.00005%) 29 (Chart 2).

Foliasalacin D_1 (1), $[\alpha]_D^{23} + 24.6$ (CHCl₃), was isolated as a white powder. Absorption for hydroxyl (3420 cm⁻¹), double bond (1640 cm⁻¹), and ether function (1078 cm⁻¹) was revealed in the IR spectrum. The 1H (CDCl₃) and ^{13}C NMR (Table 1) spectra³⁰ of 1 indicated the presence of 8 methyl groups $[\delta$ 0.87, 0.91, 0.98, 1.04, 1.08, 1.14, 1.32, 1.32 (3H each, all s, H₃-28, 25, 26, 23, 27, 24, 29, 30)], a methine bearing an oxygen function $[\delta$ 3.47 (1H, t-like, J=2.5 Hz, H-3)], a disubstituted double bond $[\delta$ 5.58 (1H, d, J=15.8 Hz, H-21), 5.64 (1H, dd-like, J=6.9, 15.8 Hz, H-20)], and a tri-substituted double bond $[\delta$ 5.62 (1H, m, H-6)], together with 9 methylenes, 2 methine, and 6 quaternary carbons. As shown in Figure 1, the 1H - 1H COSY experiment on 1 indicated the presence of partial structure drawn in bold lines, and in the HMBC experiment, long-range correlations were observed between the following protons and carbons: H-6 and C-8, 10; H₂-18 and C-12, 14, 16, 19; H₂-19 and C-16,

^{*} Corresponding author. Tel.: +81 75 595 4633; fax: +81 75 595 4768. E-mail address: myoshika@mb.kyoto-phu.ac.jp (M. Yoshikawa).

Chart 1.

18, 21; H-20 and C-17, 22; H-21 and C-19, 29, 30; H₃-23 and C-3-5, 24; H₃-24 and C-3-5, 23; H₃-25 and C-8-11; H₃-26 and C-8, 13-15; H₃-27 and C-12-14, 18; H₃-28 and C-16-19; H₃-29 and C-21, 22, 30; and H₃-30 and C-21, 22, 29. The spectra of **1** were similar to those of baruol, 31 which was determined as the uncommon natural triterpenoid with D:B-friedobaccharane skeleton. EIMS of **1** exhibited molecular ion peak at m/z 442 and HREIMS analysis revealed the molecular formula to be $C_{30}H_{50}O_2$. In addition, the EIMS of **1**

showed the characteristic fragments at m/z 152 for $C_{10}H_{16}O$ (i) and 290 for $C_{20}H_{34}O$ (ii) as shown in Figure 2, which were derived from the retro Diels–Alder cleavage, regarded as suggestive of a Δ^5 -compound. Consequently, **1** was characterized as D:B-friedo-bacchar-5,20-dien-3 β ,22-diol. Next, the NOE correlations between the following proton pairs (H-3 and H₃-23, H₃-24, H-2 α , H-2 β ; H-8 and H-10, H₃-27; H-10 and H₃-23; H-18 β and H₃-28; H-18 α and H₂-19; and H₂-19 and H₃-27) were observed in the NOESY experiment on

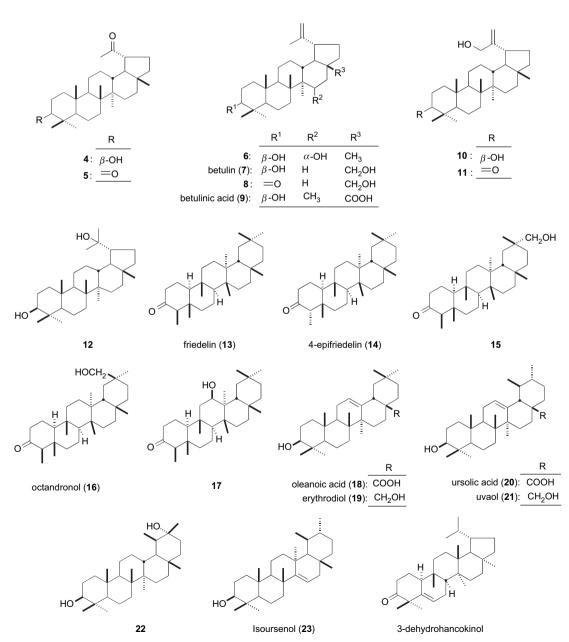


Chart 2.

Table 1¹³C NMR data for **1–3** and related compound (**1a**)

Position	1	1a	2	3	Position	1	1a	2	3
1	18.1	21.4	18.1	18.1	16	33.7	33.7	34.6	34.7
2	27.7	38.1	27.7	27.8	17	32.3	32.3	31.6	31.6
3	76.3	215.4	76.3	76.3	18	45.3	45.3	44.6	44.4
4	40.8	50.0	40.8	40.8	19	45.5	45.4	38.4	38.6
5	142.0	142.7	142.0	142.0	20	124.2	124.2	29.6	29.7
6	122.0	121.3	122.0	122.0	21	140.7	140.7	76.9	77.0
7	23.7	23.7	23.7	23.7	22	70.8	70.8	147.4	147.4
8	44.6	44.2	44.6	44.6	23	29.0	28.4	29.0	29.0
9	35.5	35.7	35.5	35.5	24	25.5	24.6	25.5	25.5
10	50.0	51.0	50.0	50.0	25	17.5	17.1	17.5	17.5
11	34.2	33.6	34.2	34.2	26	15.2	14.9	15.2	15.2
12	32.7	32.6	32.7	32.8	27	20.6	20.7	20.2	20.2
13	36.6	36.6	36.5	36.5	28	32.9	32.8	32.9	34.0
14	37.8	37.9	37.9	37.9	29	29.9	29.9	111.4	111.3
15	29.2	29.1	29.2	29.2	30	30.0	30.0	17.3	17.3

Measured in CDCl₃ at 125 MHz.

1. The evidence mentioned above indicated that the steric configurations of the H-8, H-10, Me-4 (H₃-23), Me-13 (H₃-27), and C(19) to be α -axial, while those of Me-9 (H₃-25) and Me-14 (H₃-26) to be β-axial. Furthermore, the steric configuration of the H-3 was determined to be α -equatorial, which was also supported since the proton and carbon signals at A and B rings (H-1-H-10 and H-23-25) of **1** in the ¹H and ¹³C NMR spectra were superimposable on those of baruol³¹ with the steric configuration of $H\alpha$ (equatorial)-3, $H\alpha(axial)-10$, and $Me\beta(axial)-9$ (H_3-25). Finally, the oxidation of 1 with pyridinium chlorochromate (PCC) was carried out to give 1a as the product (Fig. 2). The CD spectrum (MeOH) of 1a showed Cotton effect at 298 nm ($\Delta \varepsilon$ -0.82) in MeOH and 300 nm ($\Delta \varepsilon$ -0.92) in dioxane, carbonyl $n \rightarrow \pi^*$, which was very similar to that of 3dehydrohancokinol³² (Chart 2) [295 nm ($[\theta]$ –4100) in dioxane] reported by Lou et al. On the basis of the structural similarities of Aand B-ring, the absolute stereostructure at the 10-position in 1a was elucidated to be in S orientation. Consequently, 1 was determined to be (3S,8S,9R,10S,13S,14R,17S)-D:B-friedobacchar-5,20dien-3β,22-diol.

Foliasalacin D_2 (**2**) was isolated as a white powder with positive optical rotation ($[\alpha]_D^{29} + 17.1$ in CHCl₃). The IR spectrum of **2** showed absorption bands at 3422, 1636, and 1096 cm⁻¹ ascribable to hydroxyl, double bond, and ether functions. The 1H (CDCl₃) and ^{13}C NMR (Table 1) spectra³⁰ showed signals assignable to 7 methyls $[\delta$ 0.86, 0.89, 0.96, 1.02, 1.05, 1.13, 1.70 (3H each, all s, H₃-28, 25, 26, 23, 27, 24, 30)], 2 methines bearing an oxygen function $[\delta$ 3.46 (1H, s-like, H-3), 3.99 (1H, t-like, J=6.2 Hz, H-21)], a terminal double bond $[\delta$ 4.83, 4.91 (1H each, both br s, H₂-29)], and a tri-substituted double bond $[\delta$ 5.59 (1H, m, H-6)], together with 10 methylenes, 2

methines, and 5 quaternary carbons. The ¹H-¹H COSY experiment on 2 indicated the presence of partial structure drawn in bold lines, and in the HMBC experiment, long-range correlations were observed between the following proton and carbon pairs: H-6 and C-8, 10; H₂-18 and C-14, 16, 19; H₂-19 and C-16, 18; H-21 and C-19, 29, 30; H₃-23 and C-3-5, 24; H₃-24 and C-3-5, 23; H₃-25 and C-8-11; H₃-26 and C-8, 13-15; H₃-27 and C-12-14, 18; H₃-28 and C-16-19; H₃-29 and C-21, 22, 30; and H₃-30 and C-21, 22, 29. Furthermore, the molecular formula $C_{30}H_{50}O_2$ of 2 was determined based on the results of the molecular ion peak at m/z 442 and HREIMS measurement, and the fragment ion peaks were identical to those of 1, which were observed at m/z 152 for $C_{10}H_{16}O$ and 290 for C₂₀H₃₄O. In the NOESY experiment, the NOE correlations were observed similar to those of 1 as shown in Figure 1, which suggested that the stereochemistry of 2 was the same as that of 1 except for the side chain. Finally, the (R)- and (S)-MTPA esters (2a and 2b) were derived from 2 upon reaction with (R)- and (S)-MTPA in the presence of EDC·HCl and 4-DMAP. The protons on the 29- and 30-position of the (S)-MTPA ester (**2b**) resonated at higher field than those of the (R)-MTPA ester (2a) $[\Delta \delta$: negative], while the protons on the 8-, 11-, 12-, 15-, 16-, 18-20-, and 26-28-position of **2b** were observed at lower fields compared to those of **2a** [$\Delta \delta$: positive] (Fig. 3). Consequently, the absolute stereostructure of the 21-position in 2 was elucidated to be in R orientation, and the stereostructure of 2 was determined to be (3S,8S,9R,10S,13S,14R,17S,21R)-D:B-friedobacchar-5,22-dien-3\beta,21-diol.

Foliasalacin D₃ (**3**) was isolated as a white powder with positive optical rotation ($[\alpha]_D^{29} + 20.8$ in CHCl₃). Its molecular formula $C_{30}H_{50}O_2$ was determined based on the results of the molecular ion peaks at m/z 442 and HREIMS measurement. The ¹H (CDCl₃) and ¹³C NMR (Table 1) spectra³⁰ indicated that the stereostructures of A–D rings and the planar structure of the side chain part were the same as those of **2**. Finally, the (R)- and (S)-MTPA esters (**3a** and **3b**) were

Figure 1. ¹H–¹H COSY, HMBC, and NOE correlations of **1–3**.

(R)- or (S)-MTPA =
$$\frac{-0.02}{0.03}$$
 = $\frac{0.02}{0.03}$ = $\frac{0.08}{0.012}$ = $\frac{0.08}{0.01$

Figure 3. Application of the modified Mosher's method to 2 and 3.

derived from **3** upon reaction with (R)- and (S)-MTPA in the presence of EDC·HCl and 4-DMAP. The protons on the 29- and 30-position of the (S)-MTPA ester (**3b**) resonated at lower field than those of the (R)-MTPA ester (**3a**) [$\Delta\delta$: positive], while the protons on the 8-, 11-, 12-, 15-, 16-, 18-20-, and 26-28-position of **3b** were observed at higher fields compared to those of **3a** [$\Delta\delta$: negative] (Fig. 3). Thus, **3** was elucidated to be the 21-isomer of **2** and the absolute stereochemistry was characterized as shown.

3. Experimental

3.1. General

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (l=5 cm); CD spectra, JASCO J-720WI spectrometer; UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; 1 H NMR spectra, JEOL JNM-LA500 (500 MHz) spectrometer; 13 C NMR spectra, JEOL JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; EIMS and HREIMS, JEOL JMS-GCMATE mass spectrometer; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10A UV-vis detectors. HPLC column, Cosmosil 5C₁₈-MS-II (Nacalai Tesque Inc., 250×4.6 mm i.d. and 250×20 mm i.d.) columns were used for analytical and preparative purposes, respectively.

The following experimental conditions were used for chromatography: normal-phase silica gel column chromatography, silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150–350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100–200 mesh); Diaion HP-20 column chromatography (Nippon Rensui); TLC, pre-coated TLC plates with silica gel 60F₂₅₄ (Merck, 0.25 mm) (normal-phase) and silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reversed-phase); detection was achieved by spraying with 1% Ce(SO₄)₂–10% aqueous H₂SO₄, followed by heating.

3.2. Plant material

The dried leaves of *S. chinensis* Linn. were collected at Nakhon Si Thammarat province, Thailand in 2006 and identified by Dr. Pongpiriyadacha Y. (Rajamangala University of Technology Srivijaya). A voucher of the plant is on file in our laboratory (2006. Thai-06).

3.3. Extraction and isolation

The dried leaves of S. chinensis Linn. (5.8 kg) were finely cut and extracted three times with methanol (MeOH) under reflux for 3 h. Evaporation of the solvent under reduced pressure provided a methanolic extract (756 g, 13.0%). The MeOH extract (712 g) was partitioned into an EtOAc-H₂O (1:1, v/v) mixture to furnish an EtOAc-soluble fraction (222 g, 4.1%) and an aqueous phase. The aqueous phase was further extracted with n-BuOH to give an n-BuOH-soluble fraction (130 g, 2.4%) and an H₂O-soluble fraction (361 g, 6.6%). The EtOAc fraction (200 g) was subjected to ordinaryphase silica gel column chromatography [3.8 kg, hexane-EtOAc (40:1 to 10:1 to 5:1 to 1:1, v/v)-CHCl₃-MeOH-H₂O (10:3:1, v/v/v, lower layer)-MeOH] to give 16 fractions [Fr. 1 (0.7 g), Fr. 2 (1.3 g), Fr. 3 (28.3 g), Fr. 4 (0.9 g), Fr. 5 (9.0 g), Fr. 6 (14.9 g), Fr. 7 (3.2 g), Fr. 8 (10.7 g), Fr. 9 (9.1 g), Fr. 10 (6.2 g), Fr. 11 (4.2 g), Fr. 12 (13.8 g), Fr. 13 (4.1 g), Fr. 14 (43.2 g), Fr. 15 (16.9 g), and Fr. 16 (26.3 g)]. Fraction 3 (28.3 g) was subjected to ordinary-phase silica gel column chromatography [1.0 kg, hexane-hexane-EtOAc (200:1 to 150:1 to 100:1 to 50:1 to 20:1 to 10:1, v/v)-EtOAc] to afford 16 fractions [Fr. 3-1 (10 mg), Fr. 3-2 (5170 mg), Fr. 3-3 (7570 mg), Fr. 3-4 (790 mg), Fr. 3-5 (1260 mg), Fr. 3-6 (3390 mg), Fr. 3-7 (1020 mg), Fr. 3-8 (3480 mg), Fr. 3-9 (250 mg), Fr. 3-10 (260 mg), Fr. 3-11 (300 mg), Fr. 3-12 (110 mg), Fr. 3-13 (350 mg), Fr. 3-14 (300 mg), Fr. 3-15 (420 mg), and Fr. 3-16 (1800 mg)]. Fr. 3-6 (3390 mg) was further recrystallized with CHCl3-MeOH (1:1, v/v) to give friedelin (13, 1860.0 mg, 0.042%). Fraction 4 (0.9 g) was isolated with ordinaryphase silica gel column chromatography [40 g. hexane-hexane-EtOAc (200:1 to 150:1 to 75:1 to 50:1 to 10:1, v/v)-EtOAc to furnish 13 fractions [Fr. 4-1 (19 mg), Fr. 4-2 (24 mg), Fr. 4-3 (84 mg), Fr. 4-4 (94 mg), Fr. 4-5 (34 mg), Fr. 4-6 (45 mg), Fr. 4-7 (100 mg), Fr. 4-8 (61 mg), Fr. 4-9 (78 mg), Fr. 4-10 (64 mg), Fr. 4-11 (126 mg), Fr. 4-12 (101 mg), and Fr. 4-13 (121 mg)]. Fr. 4-7 (100 mg) was recrystallized with CHCl₃-MeOH (1:1, v/v) to give 4-epifriedelin (14, 48.8 mg, 0.0011%). Fraction 10 (6.2 g) was subjected to Sephadex LH-20 column chromatography [200 g, MeOH-CHCl₃ (1:1, v/v)] to give two fractions [Fr. 10-1 (2400 mg) and Fr. 10-2 (3600 mg)]. Fr. 10-2 (3600 mg) was subjected to reversed-phase silica gel column chromatography [120 g, CH₃CN-H₂O (75:25 to 85:15 to 90:10 to 100:5, v/v)↑-CH₃CN-CHCl₃] to give nine fractions [Fr. 10-2-1 (150 mg), Fr. 10-2-2 (164 mg), Fr. 10-2-3 (192 mg), Fr. 10-2-4 (817 mg), Fr. 10-2-5 (204 mg), Fr. 10-2-6 (70 mg), Fr. 10-2-7 (49 mg), Fr. 10-2-8 (159 mg), and Fr. 10-2-9 (583 mg)]. Fr. 10-2-2 (164 mg) was further purified by HPLC [MeOH-H2O (92:8, v/v)] to furnish betulinic acid (9, 28.0 mg, 0.00062%), Fr. 10-2-2-4 (12.8 mg), and Fr. 10-2-2-7 (5.5 mg). Fr. 10-2-2-4 (12.8 mg) was further purified by HPLC [CH₃CN-H₂O (75:25, v/v)] to give lup-20(29)-en-3-on-28-ol (8, 3.2 mg, 0.00007%). Fr. 10-2-2-7 (5.5 mg) was purified by HPLC [MeOH-H₂O (88:12, v/v)] to afford 29-norlupan-3,20-dione (5, 1.8 mg, 0.00004%). Fr. 10-2-3 (192 mg) was separated with HPLC $[MeOH-H_2O (92:8, v/v)]$ and finally HPLC $[MeOH-H_2O (88:12, v/v)]$ to furnish foliasalacin D₂ (2, 2.3 mg, 0.00005%), lup-20(29)-en- 3β , 15α -diol (**6**, 23.8 mg, 0.00053%), and 30-hydroxylup-20(29)-en-3-one (11, 23.5 mg, 0.00052%). Fr. 10-2-4 (817 mg) was subjected to HPLC [MeOH $-H_2O$ (92:8, v/v)] and HPLC [MeOH $-H_2O$ (88:12, v/v)] to give foliasalacins D_1 (1, 13.1 mg, 0.00029%), D_2 (2, 8.8 mg, 0.00020%), and D₃ (3, 10.7 mg, 0.00024%) together with 3 β hydroxy-20-oxo-30-norlupane (**4**, 55.2 mg, 0.0013%), 12β-hydroxy D:A-friedooleanan-3-one (17, 1.8 mg, 0.00004%), and 30-hydroxylup-20(29)-en-3-one (11, 588.8 mg, 0.013%). Fr. 10-2-5 (204 mg) was purified with HPLC [MeOH-H2O (92:8, v/v)] and finally HPLC [MeOH-H₂O (88:12, v/v)] to afford 3 β -hydroxy-20-oxo-30-norlupane (4, 16.9 mg, 0.00038%) and octandronol (16, 4.2 mg, 0.00009%). Fraction 11 (4.2 g) was subjected to reversed-phase silica gel column chromatography [150 g, MeOH-H₂O (70:30 to 80:20 to 90:10, v/v)-MeOH-CHCl₃] to afford five fractions [Fr. 11-1

(45 mg), Fr. 11-2 (54 mg), Fr. 11-3 (40 mg), Fr. 11-4 (799 mg), and Fr. 11-5 (1960 mg)]. Fr. 11-4 (799 mg) was separated by HPLC [MeOH-H₂O (92:8, v/v)] to give 16 fractions [Fr. 11-4-1 (5.0 mg), Fr. 11-4-2 (9.1 mg), Fr. 11-4-3 (7.1 mg), Fr. 11-4-4 (55.9 mg), Fr. 11-4-5 (18.5 mg), Fr. 11-4-6 (107.7 mg), Fr. 11-4-7 (17.7 mg), Fr. 11-4-8 (29.2 mg), Fr. 11-4-9 (34.5 mg), Fr. 11-4-10 (54.7 mg), Fr. 11-4-11 (64.5 mg), Fr. 11-4-12 (78.6 mg), Fr. 11-4-13 (32.2 mg), Fr. 11-4-14 (15.7 mg), Fr. 11-4-15 (18.1 mg), and Fr. 11-4-16 (16.2 mg)], Frs. 11-4-4 and 11-4-10 were identified as betulin (7, 55.9 mg, 0.0012%) and 3β-hydroxy-20-oxo-30-norlupane (4, 54.7 mg, 0.0012%). Fr. 11-4-5 (18.5 mg) was purified by HPLC [MeOH-H₂O (88:12, v/v)] to give betulin (7, 1.8 mg, 0.00004%) together with betulinic acid (9, 11.9 mg, 0.00026%). Fr. 11-4-6 (107.7 mg) was isolated with HPLC $[CH_3CN-MeOH-H_2O$ (65:16:19, v/v/v)] to furnish oleanoic acid (18, 14.8 mg, 0.00033%), ursolic acid (**20**, 15.1 mg, 0.00034%), erythrodiol (19, 16.5 mg, 0.00037%), uvaol (21, 16.2 mg, 0.00037%), and foliasalacin D₁ (**1**, 6.0 mg, 0.00014%). Fr. 11-4-7 (17.7 mg) was separated by HPLC [MeOH $-H_2O$ (88:12, v/v)] to afford isoursenol (23, 2.2 mg, 0.00005%). Fr. 11-4-11 (64.5 mg) was isolated with HPLC [CH₃CN-MeOH-H₂O (65:16:19, v/v/v)] and finally HPLC [MeOH- H_2O (88:12, v/v)] to give lup-20(29)-ene-3 β ,30-diol (10, 6.4 mg, 0.00014%). Fr. 11-4-12 (78.6 mg) was subjected to HPLC [CH₃CN-MeOH- H_2O (65:16:19, v/v)] to furnish lup-20(29)-ene-3 β ,30-diol (10, 6.4 mg, 0.00014%) and 30-hydroxylup-20(29)-en-3-one (11, 38.2 mg, 0.00085%). Fr. 11-4-14 (15.7 mg) was isolated with HPLC [MeOH-H₂O (88:12, v/v)] to give 19a(H)-taraxastane-3 β ,20 α -diol (22, 3.0 mg, 0.00007%). Fr. 11-4-15 (18.1 mg) was further subjected to HPLC [MeOH-H2O (88:12, v/v)] to afford friedelan-3-one-29-ol (15, 3.8 mg, 0.00009%) and 3β ,20-dihydroxy lupane (12, 4.0 mg,

The known compounds were identified by comparison of their physical data ([α]_D, 1 H NMR, 13 C NMR, and MS) with those of reported values.

3.3.1. Foliasalacin D_1 (1)

A white powder, $[\alpha]_{2}^{23}$ +24.6 (c 0.60, CHCl₃). High-resolution EIMS calcd for $C_{30}H_{50}O_{2}$ (M)+: 442.3811, found: 442.3814. IR (KBr): 3420, 2932, 2870, 1640, 1456, 1385, 1215, 1096, 972, 756 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.87, 0.91, 0.98, 1.04, 1.08, 1.14, 1.32, 1.32 (3H each, all s, H₃-28, 25, 26, 23, 27, 24, 29, 30), 1.07 (1H, d, J=13.7 Hz, H-18 α), 1.24 (1H, d, J=13.7 Hz, H-18 β), 1.43 (1H, dd, J=4.1, 11.6 Hz, H-8), 1.96, 2.36 (1H each, both dd, J=6.9, 13.7 Hz, H₂-19), 2.08 (1H, m, H-10), 3.47 (1H, t-like, J=2.5 Hz, H-3), 5.58 (1H, d, J=15.8 Hz, H-21), 5.62 (1H, m, H-6), 5.64 (1H, dd-like, J=6.9, 15.8 Hz, H-20). ¹³C NMR data (125 MHz, CDCl₃) δ _C: given in Table 1. EIMS: m/z 442 (M+, 2), 424 (10), 406 (63), 343 (27), 325 (100), 290 (8), 191 (67), 152 (18).

3.3.2. Foliasalacin D_2 (2)

A white powder, $[\alpha]_D^{29} + 17.1$ (c 0.43, CHCl₃). High-resolution EIMS calcd for $C_{30}H_{50}O_2$ (M)⁺: 442.3811, found: 442.3806. IR (KBr): 3422, 3069, 3015, 2948, 1636, 1096, 897, 758 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.86, 0.89, 0.96, 1.02, 1.05, 1.13, 1.70 (3H each, all s, H₃–28, 25, 26, 23, 27, 24, 30), 1.05, 1.72 (1H each, both m, H₂–19), 1.07 (1H, d, J=14.5 Hz, H-18 α), 1.24 (1H, d, J=14.5 Hz, H-18 β), 1.43 (1H, dd, J=4.8, 12.4 Hz, H-8), 2.06 (1H, m, H-10), 3.46 (1H, s-like, H-3), 3.99 (1H, t-like, J=6.2 Hz, H-21), 4.83, 4.91 (1H each, both br s, H₂–29), 5.59 (1H, m, H-6). ¹³C NMR data (125 MHz, CDCl₃) δ _C: given in Table 1. EIMS: m/z 442 (M⁺, 6), 424 (23), 406 (89), 391 (33), 343 (10), 325 (58), 290 (71), 275 (23), 257 (37), 203 (33), 152 (40), 134 (100).

3.3.3. Foliasalacin D_3 (3)

A white powder, $[\alpha]_{29}^{19}$ +20.8 (*c* 0.53, CHCl₃). High-resolution EIMS calcd for $C_{30}H_{50}O_{2}$ (M)⁺: 442.3811, found: 442.3803. IR (KBr): 3422, 3069, 3015, 2948, 1636, 1094, 897, 758 cm⁻¹. ¹H NMR

(500 MHz, CDCl₃) δ 0.88, 0.91, 0.98, 1.04, 1.05, 1.11, 1.71 (3H each, all s, H₃-28, 25, 26, 23, 27, 24, 30), 1.06 (1H, d, J=14.5 Hz, H-18 α), 1.18, 1.59 (1H each, both m, H₂-19), 1.25 (1H, d, J=14.5 Hz, H-18 β), 1.43 (1H, dd, J=4.8, 12.4 Hz, H-8), 2.08 (1H, m, H-10), 3.46 (1H, s-like, H-3), 3.99 (1H, t-like, J=6.4 Hz, H-21), 4.83, 4.91 (1H each, both br s, H₂-29), 5.61 (1H, m, H-6). ¹³C NMR data (125 MHz, CDCl₃) δ _C: given in Table 1. EIMS: m/z 442 [M]⁺ (10), 424 (22), 406 (7), 391 (2), 343 (10), 325 (18), 290 (53), 275 (22), 257 (31), 203 (100), 152 (36), 134 (72).

3.3.4. PCC oxidation of 1

A solution of **1** (1.9 mg) in dry CH_2Cl_2 was treated with pyridinium chlorochromate (PCC, 5.0 mg) and the whole mixture was stirred at 0 °C for 1.5 h. The reaction mixture was poured into ice-water and extracted with EtOAc. The EtOAc extract was washed with saturated aqueous NaHCO₃ and brine, then dried over MgSO₄, and filtrated. Removal of the solvent under reduced pressure gave a crude product, which was purified by silica gel column chromatography [500 mg, hexane–EtOAc (10:1 to 5:1, v/v)] to furnish **1a** (0.6 mg, 32%).

Compound **1a**. A white powder, $[\alpha]_1^{19} + 36.6$ (c 0.02, CHCl₃). CD [MeOH, nm, (Δ ϵ)]: 298 (-0.82), CD [dioxane, nm, (Δ ϵ)]: 300 (-0.92). High-resolution EIMS calcd for $C_{30}H_{50}O_2$ (M)⁺: 440.3654, found: 440.3651. IR (KBr): 3456, 2928, 1713, 1466, 1377, 1228, 1176, 972, 756 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.87, 0.88, 0.95, 1.10, 1.23, 1.24, 1.33, 1.33 (3H each, all s, H₃-25, 28, 26, 27, 24, 23, 29, 30), 2.41–2.50 (2H, m, H₂-2), 5.58 (1H, d, J=15.6 Hz, H-21), 5.67 (1H, m, H-6), 5.64 (1H, dd, J=6.8, 15.6 Hz, H-20). ¹³C NMR data (125 MHz, CDCl₃) δ _C: given in Table 1. EIMS: m/z 440 (M⁺, 1), 422 (29), 406 (63), 341 (99), 340 (53), 290 (2), 191 (67), 150 (3), 189 (49), 177 (77), 82 (100).

3.3.5. Preparation of the (R)-MTPA ester (**2a**) and (S)-MTPA ester (**2b**) from **2**

A solution of **2** (3.6 mg) in dehydrated CHCl₃ (1.0 mL) was treated with (*R*)-2-methoxy-2-trifluoromethylphenylacetic acid [(*R*)-MTPA, (31.5 mg)] in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl, 24.9 mg) and 4-dimethyl-aminopyridine (4-DMAP, 10.5 mg), and the mixture was stirred under reflux at 60 °C for 6 h. The reaction mixture was poured into ice-water and extracted with EtOAc. The EtOAc extract was washed successively with 5% HCl, NaHCO₃-saturated H₂O, and brine, and dried over Na₂SO₄, and filtered. Removal of the solvent from the filtrate under reduced pressure afforded the residue that was subjected to normal-phase silica gel CC [500 mg, hexane–EtOAc (20:1 to 10:1 to 5:1)] to give **2a** (2.0 mg, 37%). Using a similar procedure, (*S*)-MTPA ester (**2b**, 1.8 mg, 39%) was obtained from **2** (3.1 mg) with (*S*)-MTPA (30.2 mg), EDC·HCl (26.9 mg), and 4-DMAP (8.8 mg).

Compound **2a**. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.81, 0.82, 0.90, 0.94, 1.07, 1.15, 1.73 (3H each, all s, H₃-28, 27, 25, 26, 23, 24, 29), 1.51, 1.60 (1H each, both m, H₂-1), 1.67, 1.86 (1H each, both m, H₂-2), 1.87 (2H, m, H₂-7), 1.36 (1H, dd, J=4.6, 11.6 Hz, H-8), 2.08 (1H, m, H-10), 1.47, 1.59 (1H each, both m, H₂-11), 0.87, 1.54 (1H each, both m, H₂-12), 1.13, 1.27 (1H each, both m, H₂-15), 1.19, 1.54 (1H each, both m, H₂-16), 0.97, 1.19 (1H each, both d, J=14.1 Hz, H₂-18), 1.00, 1.56 (1H each, both m, H₂-19), 1.50, 1.72 (1H each, both m, H₂-20), 3.49 (1H, br s, H-3), 3.55 (3H, s, -COOCH₃), 4.97, 5.05 (1H each, both br s, H₂-30), 5.37 (1H, dd, J=5.2, 7.7 Hz, H-21), 5.64 (1H, m, H-6), 7.37–7.52 (5H, m, Ph–H).

Compound **2b**. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.85, 0.90, 0.95, 0.96, 1.07, 1.15, 1.62 (3H each, all s, H₃-28, 25, 27, 26, 23, 24, 29), 1.51, 1.60 (1H each, both m, H₂-1), 1.67, 1.86 (1H each, both m, H₂-2), 1.87 (2H, m, H₂-7), 1.40 (1H, dd, J=4.6, 11.6 Hz, H-8), 2.08 (1H, m, H-10), 1.49, 1.62 (1H each, both m, H₂-11), 0.91, 1.55 (1H each, both m, H₂-12), 1.20, 1.32 (1H each, both m, H₂-15), 1.27, 1.59

(1H each, both m, H_2 -16), 1.04, 1.24 (1H each, both d, J=14.0 Hz, H₂-18), 1.10, 1.67 (1H each, both m, H₂-19), 1.58, 1.77 (1H each, both m, H₂-20), 3.49 (1H, br s, H-3), 3.54 (3H, s, -COOCH₃), 4.92, 4.96 (1H each, both br s, H₂-30), 5.32 (1H, dd, *J*=6.4, 6.4 Hz, H-21), 5.64 (1H, m, H-6), 7.37-7.52 (5H, m, Ph-H).

3.3.6. Preparation of the (R)-MTPA ester (3a) and (S)-MTPA ester (3b) from 3

A solution of 3 (2.1 mg) in dehydrated CHCl₃ (1.0 mL) was reacted with (R)-MTPA (20.0 mg) in the presence of EDC·HCl (20.0 mg) and 4-DMAP (8.0 mg), and the mixture was stirred under reflux at 60 °C for 6 h. Workup of the reaction mixture as described for 2 gave 3a (1.2 mg, 38%). Using a similar procedure, (S)-MTPA ester (**3b**, 1.3 mg, 42%) was obtained from **3** (2.1 mg) with (S)-MTPA (33.2 mg), EDC·HCl (27.1 mg), and 4-DMAP (11.0 mg).

Compound **3a**. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.85, 0.90, 0.97, 1.00, 1.05, 1.14, 1.59 (3H each, all s, H₃-28, 25, 26, 27, 23, 24, 29), 1.50, 1.59 (1H each, both m, H₂-1), 1.67, 1.85 (1H each, both m, H₂-2), 1.88 (2H, m, H₂-7), 1.42 (1H, dd, *J*=4.6, 11.9 Hz, H-8), 2.08 (1H, m, H-10), 1.50, 1.60 (1H each, both m, H₂-11), 0.92, 1.58 (1H each, both m, H₂-12), 1.14, 1.34 (1H each, both m, H₂-15), 1.30, 1.60 (1H each, both m, H₂-16), 1.05, 1.28 (1H each, both m, H₂-18), 1.18, 1.70 (1H each, both m, H₂-19), 1.62 (2H, m, H₂-20), 3.49 (1H, br s, H-3), 3.56 (3H, s, -COOCH₃), 4.91, 4.95 (1H each, both br s, H₂-30), 5.30 (1H, dd, *J*=6.4, 6.4 Hz, H-21), 5.62 (1H, m, H-6), 7.39–7.52 (5H, m, Ph-H).

Compound **3b**. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.78, 0.90, 0.95, 0.98, 1.05, 1.14, 1.72 (3H each, all s, H₃-28, 25, 26, 27, 23, 24, 29), 1.50, 1.59 (1H each, both m, H₂-1), 1.67, 1.85 (1H each, both m, H₂-2), 1.88 (2H, m, H₂-7), 1.41 (1H, dd, *J*=4.3, 12.3 Hz, H-8), 2.08 (1H, m, H-10), 1.48, 1.59 (1H each, both m, H₂-11), 0.89, 1.56 (1H each, both m, H₂-12), 1.08, 1.31 (1H each, both m, H₂-15), 1.20, 1.55 (1H each, both m, H₂-16), 0.99, 1.22 (1H each, both m, H₂-18), 1.06, 1.62 (1H each, both m, H₂-19), 1.56 (2H, m, H₂-20), 3.49 (1H, br s, H-3), 3.54 (3H, s, -COOCH₃), 4.96, 5.04 (1H each, both br s, H₂-30), 5.34 (1H, dd, *J*=6.9, 6.9 Hz, H-21), 5.62 (1H, m, H-6), 7.39–7.52 (5H, m, Ph-H).

Acknowledgements

This research was supported by the 21st COE program and Academic Frontier Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2008.05.054.

References and notes

- 1. Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.: Muraoka, O. Tetrahedron Lett. 1997, 38, 8367–8370.
- Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Chem. Pharm. Bull. 1998. 46 1339-1340
- 3. Matsuda, H.; Murakami, T.; Yashiro, K.; Yoshikawa, M. Chem. Pharm. Bull. 1999, 47 1725-1729
- Yoshikawa, M.; Nishida, N.; Shimoda, H.; Takada, M.; Kawahara, Y.; Matsuda, H. Yakugaku Zasshi 2001, 121, 371-378,
- Yoshikawa, M.; Morikawa, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Bioorg. Med. Chem. 2002, 10, 1547-1554
- Yoshikawa, M.; Ninomiya, K.; Shimoda, H.; Nishida, N.; Matsuda, H. Biol. Pharm. Bull. 2002, 25, 72-76.
- Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. J. Nutr. 2002, 132, 1819-1824.
- Yoshikawa, M. FOOD Style 2002, 21, 72-78.
- Morikawa, T.; Kishi, A.; Pongpiriyadacha, Y.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2003, 66, 1191-1196.
- 10. Kishi, A.; Morikawa, T.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2003, 51, 1051-1055.
- 11. Yoshikawa, M.; Pongpiriyadacha, Y.; Kishi, A.; Kageura, T.; Wang, T.; Morikawa, T.; Matsuda, H. Yakugaku Zasshi 2003, 123, 871-880.
- 12. Matsuda, H.; Yoshikawa, M.; Morikawa, T.; Tanabe, G.; Muraoka, O. J. Trad. Med. 2005, 22, 145-153.
- 13. Yoshikawa, M.; Xu, F.; Nakamura, S.; Wang, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Heterocycles, in press.
- Nakamura, S.; Zhang, Y.; Pongpiriyadacha, Y.; Wang, T.; Matsuda, H.; Yoshikawa, M. Heterocycles 2007, 75, 131-143.
- Zhang, Y.; Nakamura, S.; Pongpiriyadacha, Y.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2008, 56, 547-553.
- 16. Nakamura, S.; Zhang, Y.; Wang, T.; Matsuda, H.; Yosikawa, M. Heterocycles, in press.
- 17. Yosikawa, M.; Zhang, Y.; Wang, T.; Nakamura, S., Matsuda, H. Chem, Pharm, Bull.
- 18. Wu, T.; Cheng, Z.; Liu, H.; Li, Y.; Wang, Z. Zhongguo Yaoxue Zazhi 2005, 40,
- 19. Cole, B. J. W.; Bentley, M. D.; Hua, Y.; Bu, L. J. Wood Chem. Tech. 1991, 11, 209-223.
- 20. Tanaka, R.; Masuda, K.; Matsunaga, S. Phytochemistry 1993, 32, 472-474.
- 21. Shashi, B. M.; Asish, P. K. Phytochemistry 1994, 37, 1517-1575.
- 22. Li, X.; Yao, Y.; Zheng, Y.; Lin, W.; Deng, Z. Zhongguo Tianran Yaowu 2006, 4,
- 23. Wijeratne, D. B. T.; Kumar, V.; Sultanbawa, M.; Uvais, S. J. Chem. Soc., Perkin Trans. 1 1981, 10, 2724-2726.
- Akihisa, T.; Tokuda, H.; Ukiya, M.; Suzuki, T.; Enjo, F.; Koike, K.; Nikaido, T.; Nishino, H. Chem. Pharm. Bull. 2004, 52, 153-156.
- 25. Chang, C.; Wu, T.; Hsieh, Y.; Kuo, S.; Chao, P. L. J. Nat. Prod. 1999, 62, 327-328.
- 26. Zhang, K.; Liu, J.; Wang, Y.; Huang, H.; Chen, Y. Zhongshan Daxue Xuebao 1998, 37, 85-88.
- 27. Wang, M.; Yang, L.; Tu, Y. Zhongguo Zhongyao Zazhi 2006, 31, 307-308.
- 28. Ames, T. R.; Beton, J. L.; Bowers, A.; Halsall, T. G.; Jones, E. R. H. J. Chem. Soc. **1954**. 1905-1919.
- Chivers, H.; Corbett, R. E.; Mitchell, R. E. M. *J. Chem. Soc. C* **1966**, *20*, 1814–1816. The ¹H and ¹³C NMR spectra of **1–3**, **1a-3a**, **2b**, and **3b** were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homocorrelation spectroscopy (¹H-¹H COSY), heteronuclear multiple-quantum coherence (HMQC), and HMBC experiments.
- 31. Núñez, M. J.; López, M. R.; Jiménez, I. A.; Moujir, L. M.; Ravelo, A. G.; Bazzocchi, I. L. Tetrahedron Lett. 2004, 45, 7367-7370.
- 32. Lou, H.; Li, X.; Onda, M.; Konda, Y.; Urano, M.; Harigaya, Y.; Takayanagi, H.; Ogura, H. Chem. Pharm. Bull. 1991, 39, 2271-2276.